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The determination of the degeneracy of a given energy level of an N-dimensional
isotropic quantum oscillator that is perturbed by an isotropic quartic potential
energy term leads to the question to enumerate the number of nonnegative integer
solutions (nl, ...,nN)' nl;;.···;;.nN' of the system n=nl+"'+nN,
m = ni + ... + n~, as was shown recently by Louck and Metropolis. The present
paper shows the partial reduction of this question to a similar one which is solved
in the literature, precisely for N ~ 8, asymptotically for N> 8. © 1985 Academic Press,

Inc.

As shown in [4], the study of the energy spectrum of an N-dimensional
isotropic quantum oscillator that is perturbed by an isotropic quartic
potential energy term leads to the problem of enumerating the elements of
the degeneracy-set (n, mEN (always including 0»

The problem is solved for N = 3 in [4, 7] and an algorithmic procedure for
general N is developed in [5]. A more complete partial solution will be
given here using results on the number rN(n, m) of solutions of the
Diophantine equations

xi + ... +x~ = m, x I + ... + X N = n

which is known precisely for N ~ 8 (see [1]) and asymptotically for general
N (see [10,3]).
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Let us describe the connection between eN(n, m):= #EN(n, m) and
rN(n, m). Define

fN(n,m):= #{(n1,...,nN)eNNlni+"· +n~=m,nl+'" +nN=n}.

Evidently eN(n, m) ~fN(n,m) and

with equality when all n j (i = 1,..., N) are distinct. To see the connection
between fN(n, m) and rN(n, m), let us describe the situation geometrically:
rN(n,m) is the number of "lattice points" (x1"",xN)eZN in IRN lying on
the intersection of the N-dimensional hypersphere xi + ... +x~ = m with
the hyperplane Xl + ... +xN=n. (Thus rN(n, m) =0 for n2> Nm.) fN(n, m)
enumerates only the lattice points with all coordinates nonnegative:
(Xl'"'' XN) E NN. Easily we get

fN(n,m)={O ( )
r N n,m

for n2 <m

for n2 ~ (N -1 )m.

For m < n2 < (N - l)m the situation is not so clear. So we have the follow
ing formulas

1
N! rN(n, m) ~ eN(n, m) ~ rN(n, m)

eN(n,m)=O

for n2 ~ (N -1)m,

for n2 < m and for n2 > Nm.

For r N(n, m) exact formulas are known in the literature for N ~ 8 (see [1]),
for example, the following: Define L1 := Nm - n2 and suppose L1 ~ O. Sup
pose the necessary condition n =: m mod 2 is fulfilled.

N=3.

for {n=:omod 3,
n i= 0 mod 3.

N=4.

for {n ~m~ 0 mod 2,
n=m= 1 mod 2,

where r3(L1) is the number of representations of L1 as a sum of three
squares. If L1 > 3 is square free, then

r 4(n, m)= 12h(Q(J="A»,
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where h(Q(.J='A» denotes the ideal class number of the imaginary
quadratic numberfield Q(j='A) (see, e.g., [2, p.175]). Consequently
because i4rin, m):::; e4(n, m):::; r4(n, m) for n2 ~ 3m, the case e4(n, m) = 1
(which is of special interest, in this case being no "higher degeneracy;" see
[4]) can in the case of square free ,1 and with n2~ 3m at most occur when
Q(~) has class number 1 or 2, which is the case for 27 well-known
imaginary quadratic fields, namely for Q(j='A) with

,1 = 1,2,3,5,6, 7, 10, 11, 13, 15, 19,22,35, 37,43, 51, 58,

67,91, 115, 123, 163, 187,235,267,403,427.

The case ,1 non square free can be handled similarly.

N=5.

r5(n,m)=5C~ L (r~,
dl(A/2) 5)

where

c=
1-(~1)5-a

,1
for "2 i= °mod 5,

for 5a
/I ~, a> 0, ~ = 5

a
,11'

N=6, 7, 8 see [1],
For N> 8 no exact formulas seem to be known (see [8]), but

asymptotic formulas were given by Valfisz [10]:

where SN(n, m) is the so-called singular series, which can be computed
explicitly; see [3]. Using these explicit formulas one sees that for N fixed

eN(n, m) -+ 00 for ,1 =Nm _n2 -+ oo((N -1)m < n2 < Nm).

There is a generalization of the Diophantine system under consideration,
namely

q(XI,"" x N) =m, [(XI'"'' x N ) = n,

where q is a given positive definite integral quadratic form and [ a given
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integral linear form, which has been studied recently [9,6]. It would be
interesting to consider the question, whether there are relevant problems in
physics, where this Diophantine system appears.
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