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The determination of the degeneracy of a given energy level of an N-dimensional
isotropic quantum oscillator that is perturbed by an isotropic quartic potential
energy term leads to the question to enumerate the number of nonnegative integer
solutions (ny,...ny), n,2--2ny, of the system n=n+ - +ny,
m=n?+ .-~ +n%, as was shown recently by Louck and Metropolis. The present
paper shows the partial reduction of this question to a similar one which is solved
in the literature, precisely for N <8, asymptotically for N>8.  © 1985 Academic Press,

Inc.

As shown in [4], the study of the energy spectrum of an N-dimensional
isotropic quantum oscillator that is perturbed by an isotropic quartic
potential energy term leads to the problem of enumerating the elements of
the degeneracy-set (r, me N (always including 0))

Ex(n,m):= {(ny,,ny)eNY |0+ - +ni=m,

n1+ e +nN=n,nl,>'rn2> M 2”]\/20}.

The problem is soived for N=3 in [4, 7] and an algorithmic procedure for
general N is developed in {5]. A more complete partial solution will be
given here using results on the number ry(n, m) of solutions of the
Diophantine equations

xi+ o Hxi=moxi+ o +xy=n (x,€2),

which is known precisely for N< 8 (see [ 1]} and asymptotically for general
N (see [10,31).
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Let us describe the connection between en(n,m):= #E,\(n,m) and
rn(n, m). Define

fuln,m):= #{(nyny)eNY 02+ - +nd=mn + -+ +ny=n}.
Evidently ey(n, m) < fy(n, m) and

fn(n,m)< N ey(n, m)

with equality when all n, (i=1,.., N} are distinct. To see the connection
between fy(n, m) and ry(n, m), let us describe the situation geometrically:
rn(n, m) is the number of “lattice points” (x,,..., xy)€Z" in R" lying on
the intersection of the N-dimensional hypersphere x2+ -+ + x3, =m with
the hyperplane x; + -+ + xy=n. (Thus ry(n, m) =0 for n* > Nm.) fy(n, m)
enumerates only the lattice points with all coordinates nonnegative:
(%1, Xxy) € N¥, Easily we get

0 for n’<m
rulmm)  for a’>(N—1)m.

Fln, m)= {

For m <n? < (N — 1)m the situation is not so clear. So we have the follow-
ing formulas

1
—ﬁrN(n,m)SeN(n,m)SrN(n,m) for n*>(N—1)m,

en(n,m)=0 for n*<mand for n>> Nm.

For ry(n, m) exact formulas are known in the literature for N< 8 (see [1]),
for example, the following: Define 4 := Nm —n? and suppose 4> 0. Sup-
pose the necessary condition n=m mod 2 is fulfilled.

N=13
6 n=0mod 3,
r3(n,m)={3} dg/:z) (;) for {n  0mod 3

1 =m=
r4(n,m)={,}'rs(4) for {n m=0mod 2,
2

n=m=1mod 2,

where ri(4) is the number of representations of 4 as a sum of three
squares. If 4 > 3 is square free, then

ra(n, m)=12h(Q(/ — 4)),
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where A(Q(./—4)) denotes the ideal class number of the imaginary
quadratic numberfield Q(,/—4) (see, e.g, [2, p.175]). Consequently
because Lr,(n, m)<ey(n, m)<ry(n, m) for n?>3m, the case e (n,m)=1
(which is of special interest, in this case being no “higher degeneracy;” see
[4]) can in the case of square free 4 and with n? > 3m at most occur when
Q(\/ —4) has class number 1 or 2, which is the case for 27 well-known
imaginary quadratic fields, namely for Q(,/ —4) with

4=1,2,3,5,6,7, 10,11, 13, 15, 19, 22, 35, 37, 43, 51, 58,
67,91, 115, 123, 163, 187, 235, 267, 403, 427.

The case 4 non square free can be handled similarly.

N=5.

A4 1

rs(n,m)=5C—~ (f)_‘,

5 2d,MZ/2) 5/d

where
4
1 for EséOmodS,
¢= 4 4 Y
1—(—51>5_a for 57 -5,(1>0,—2"=5aé’1-

N=6,78see [1],
. For N>8 no exact formulas seem to be known (see [8]), but
asymptotic formulas were given by Valfisz [10]:

qV—-1/2

NN~ 11~(N— 1)
2

ry(n,m)= AWN=I2E (n, m)+ O(m VPN =2 log m),

where Sy(n, m) is the so-called singular series, which can be computed
explicitly; see [3]. Using these explicit formulas one sees that for N fixed

ex(n,m)—> o0  for A=Nm—n>- co((N—1)m<n®*<Nm).
There is a generalization of the Diophantine system under consideration,
namely
q(xy5 Xp)=m, UXyss Xpy)=n,

where g is a given positive definite integral quadratic form and / a given
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integral linear form, which has been studied recently [9, 6]. It would be
interesting to consider the question, whether there are relevant problems in
physics, where this Diophantine system appears.

10.
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